Note on the $k$-Dimensional Jensen Inequality

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on Jensen type inequality for Choquet integrals

The purpose of this paper is to prove a Jensen type inequality for Choquet integrals with respect to a non-additive measure which was introduced by Choquet [1] and Sugeno [20]; Φ((C) ∫ fdμ) ≤ (C) ∫ Φ(f)dμ, where f is Choquet integrable, Φ : [0,∞) −→ [0,∞) is convex, Φ(α) ≤ α for all α ∈ [0,∞) and μf (α) ≤ μΦ(f)(α) for all α ∈ [0,∞). Furthermore, we give some examples assuring both satisfaction ...

متن کامل

A Note on Jensen Inequality for Self-adjoint Operators

In this paper we consider the order-like relation for self-adjoint operators on some Hilbert space. This relation is defined by using Jensen inequality. We will show that under some assumptions this relation is antisymmetric.

متن کامل

On the refinements of the Jensen-Steffensen inequality

* Correspondence: [email protected] Abdus Salam School of Mathematical Sciences, GC University, 68-b, New Muslim Town, Lahore 54600, Pakistan Full list of author information is available at the end of the article Abstract In this paper, we extend some old and give some new refinements of the JensenSteffensen inequality. Further, we investigate the log-convexity and the exponential conve...

متن کامل

On the Jensen type inequality for generalized Sugeno integral

We prove necessary and sufficient conditions for the validity of Jensen type inequalities for generalized Sugeno integral. Our proofs make no appeal to the continuity of neither the fuzzy measure nor the operators. For several choices of operators, we characterize the classes of functions for which the corresponding inequalities are satisfied.

متن کامل

On the Jensen-Steffensen inequality for generalized convex functions

Jensen–Steffensen type inequalities for P -convex functions and functions with nondecreasing increments are presented. The obtained results are used to prove a generalization of Čebyšev’s inequality and several variants of Hölder’s inequality with weights satisfying the conditions as in the Jensen–Steffensen inequality. A few well-known inequalities for quasi-arithmetic means are generalized.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1976

ISSN: 0091-1798

DOI: 10.1214/aop/1176996102